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Introduction 
Mutational inactivation of BRCA1 accounts for 50-90% of hereditary breast and 

ovarian cancers.  BRCA1 has been implicated in multiple pathways that preserve 
genome stability, including cell cycle control, DNA repair, transcription, and chromatin 
remodeling (Scully and Livingston, 2000; Starita and Parvin, 2003; Lane, 2004; Mullan 
et al., 2006).  The multifunctional nature of BRCA1 has raised the possibility that the 
protein may employ a common mechanism, such as reorganizing chromatin structure, 
to regulate various chromosomal events.  Indeed, BRCA1 is associated with histone 
modifying enzymes (p300 and HDAC) (Yarden and Brody, 1999; Pao et al., 2000) and 
ATP-dependent chromatin remodeling machines (hSWI/SNF) (Bochar et al., 2000).  
Moreover, targeting of BRCA1 to a heterochromatic chromatin region results in large-
scale chromatin decondensation, which is not accompanied by histone hyperacetylation 
(Ye et al., 2001).  Many cancer-predisposing mutations reduce BRCA1’s affinity for 
these chromatin-modifying proteins, suggesting that chromatin remodeling may be an 
important aspect of BRCA1 tumor-suppression activity.  BRCA1 can also function via an 
alternative mechanism, by directly affecting nucleosome structure and dynamics 
through its proven protein ubiquitylation activity.  Indeed, the RING finger of BRCA1 
confers ubiquitin ligase activity to the molecule, and this activity is markedly enhanced 
when BCRA1 forms a complex with another RING protein BARD1 (Hashizume et al., 
2001; Starita and Parvin, 2006; Boulton, 2006; Barber and Boulton, 2006).  The 
BRCA1/BARD1 complex mono-ubiquitylates purified core histones in vitro (Chen et al., 
2002; Mallery et al., 2002).  Whether core histones can be modified in the context of 
chromatin is unclear. 

Despite the fact that histones (H2A) were the first proteins described to be 
ubiquitylated (Goldknopf et al., 1975; Goldknopf and Busch, 1977), the structural and 
functional consequences of this bulky post-translational modification remain unclear.  
The histone ubiquitylation field has experienced a burst of renewed interest following 
the identification of the E2 ubiquitin-conjugating and E3 ubiquitin-ligating enzymes that 
covalently attach ubiquitin to histone H2B lysine 123 in yeast (Robzyk et al., 2000; 
Hwang et al., 2003; Wood et al., 2003).  The yeast studies were quickly followed by 
identification of the mammalian enzymes that modify H2BK120 (Zhu et al., 2005; Kim et 
al., 2005) or H2AK119, a modification that is not present in yeast (Wang et al., 2004; 
Cao et al., 2005).  Equally importantly, several laboratories have described a 
unidirectional, evolutionarily-conserved “trans-tail” event, in which H2Bub regulates 
subsequent methylation of histone H3 at K4 and K79 (Dover et al., 2002, Ng et al., 
2002, Sun and Allis, 2002; Briggs et al., 2002; Kim et al., 2005; Pavri et al., 2006), 
suggesting a role in transcriptional regulation (for reviews and further references, see 
Osley, 2006a, b; Laribee et al., 2007).  The importance of this trans-tail connection for 
transcription regulation has been recently challenged by at least one in vitro (Pavri et 
al., 2006) and several in vivo studies (Shukla and Bhaumik, 2007;Tanny et al., 2007), all 
pointing to a predominant transcriptional role for H2B ubiquitylation which is 
independent of H3 methylation. 

Relevant to the present study is also the notion that H2A and H2B ubiquitylation play 
distinct, and in many cases opposing roles in transcriptional regulation.  H2Bub occurs 



 5 

throughout the promoter and coding regions and participates in both gene activation 
and in gene silencing (Osley, 2006a, b; Laribee et al., 2007).  H2Aub, on the other 
hand, is strictly confined to the promoter regions and is involved in transcriptional 
silencing (Osley, 2006a, b).  How this specificity in regulation of transcription is achieved 
is unclear.  In theory, two major, mutually non-exclusive mechanisms are possible: 
specific interactions of ubiquitylated H2A and H2B with protein factors and direct 
differential effects of ubiquitylated H2A and H2B on the structural and dynamic 
properties of the nucleosome or the chromatin fiber. 

As a first step in elucidating the properties of nucleosomes that contain either H2Aub 
or H2Bub, we setup an in vitro ubiquitylation system using the BRCA1/BARD1 complex 
(E3).  BRCA1/BARD1, in combination with UbcH5c or UbcH5a E2 enzymes, has been 
reported to ubiquitylate purified histones (Chen et al., 2002; Mallery et al., 2002).  
However, whether it can modify nucleosomal histones has not been investigated.  Here 
we show: (i) that both H2A and H2B can be ubiquitylated when organized in the 
nucleosome; and (ii) in the absence of additional factors, nucleosomes can be 
simultaneously modified on both histones. 
 

 
Body 

 
Task 1: Determine the histone ubiquitylation activity of BRCA1 on histones incorporated 
into reconstituted nucleosome particles (months 1-4). 
 
a. Acquire existing expression clones for human BRCA1 and BARD1 proteins, and 
purify the recombinant proteins (months 1-2). Acquired BRCA1/ BARD1 expression 
clones from Dr. Zhen-Qiang Pan (Derald H. Ruttenberg Cancer Center, The Mount 
Sinai School of Medicine, New York, New York 10029-6574, overexpressed and purified 
the proteins.  Unfortunately they were not active. Hence we collaborated with Dr. Jaffery 
Parvin (Department of Biomedical Informatics, The Ohio State University Medical 
Center, Columbus, OH 43210), who provided BRCA1/BARD1 protein complex. 
 
b. Acquire and perform quality tests on the other components of the ubiquitylation 
system: E1 and UbcH5a (Boston Biochem), ubiquitin (Sigma), and individual core 
histones (Roche) (months 1-2). Done 
 
c. Form the BRCA1/BARD1 complex and test its in vitro ubiquitylation activity on 
purified histones (month 3). Done 
 
d. Reconstitute nucleosome particles on the 208 bp nucleosome positioning sequence 
from sea urchin 5s rRNA gene; perform and analyze the ubiquitylation reaction (month 
4). Done 

 
Task 2: Use single-molecule assays to study the effect of BRCA1-mediated 
ubiquitylation of core histones on the dynamics of ‘canonical’ nucleosomal particles in 
real time (months 5-12). To be performed 
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a. Perform all labeling procedures to attach the pair of fluorescent dyes (Cy3 donor and 
Cy5 acceptor) to specific sites in the nucleosome particle (either both dyes at different 
positions of the DNA to follow dissociation/opening or breathing) or to the DNA and one 
of the histones to follow sliding) (month 5). 
b. Using the existing wide-field prism-based evanescent field fluorescence microscope 
(EFFM) perform the opening/breathing/sliding experiments to follow the spontaneous 
conformational transitions in control nucleosome particles containing unmodified 
histones (months 6-9). 
c. Repeat the above EFFM experiments on nucleosome containing the BRCA1-
ubiquitylated histones (months 10-12). The ubiquitylation reaction will be performed in 
three alternative ways: 

c.1. On isolated histones, after which the ubiquitylated histones species will be 
reconstituted into nucleosomes (bulk reconstitution); 
c.2. On pre-reconstituted nucleosome particles (bulk reconstitution), see Task 1; 
c.3. On individual pre-reconstituted nucleosome particles attached to the glass 
surface in the flow cell of the instrument; in this specific case, one hopes to be 
able to see the conformational changes that occur in nucleosomes as a result of 
BRCA1-mediated modification in real time. 

 

EXPERIMENTAL PROCEDURES 
DNA Fragments for Nucleosome Reconstitution—Mononucleosome particles were 

reconstituted using the 208 bp nucleosome positioning sequence from sea urchin 5S 
rDNA, and oligonucleosomes were reconstituted on the same sequence repeated in 
tandem (208-12) (Simpson et al., 1985). 

Isolation of Human Recombinant Histones H2A and H2B—The coding sequences 
for the canonical human histones H2A, H2B, H3, and H4 have been cloned using the 
pET-22b expression vector in Dr. Fukui’s laboratory.  Recombinant histones were then 
overexpressed in Rosetta (DE3) pLysS cells, purified by tandem ion exchange 
chromatography (Q Sepharose/SP Sepharose, Amersham Biosciences), and checked 
on 15% SDS-PAGE (Fig. 1A). 

Preparation of the BRCA1/BARD1 complex— The BRCA1/BARD1 complex was 
purified from Hi-five cells co-infected with recombinant baculoviruses for the expression 
of BRCA1 and BARD1 and purified as described (Starita et al., 2004).  The 
concentration of the complex was in the range of 50-100 nM. 

Reconstitution of Histone Octamers and of Nucleosomes—Octamers were 
reconstituted by dialysis of an equimolar mixture of all four core histones from 8M 
guanidinium-HCl to 2M NaCl (Luger et al., 1999), followed by purification on a Superdex 
(Amersham Biosciences) column.  Nucleosomes were reconstituted by the salt-jump 
method (Zivanovic et al., 1990) as detailed in Tomschik et al. (2005).  Reconstitutes 
were analyzed on 5.5% native PAGE gels that resolve alternative octamer positions 
along the DNA sequence (Fig. 2).  Oligonucleosomes were reconstituted by the same 
method using the 208-12 fragment and analyzed on 1% agarose gels (Fig. 2).  We used 
conditions (histone/DNA ratios) which led to only partial assembly: the reconstitute 
contained less than half the number of possible nucleosomes, as judged by restriction 
nuclease digestion (Hansen et al., 1989).  This condition was necessary to ensure that 
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neighboring modified particles will not interact with each other to cause aggregation 
(see below). 

In vitro Ubiquitylation Assay and Analysis of the Modified Substrates—The 
ubiquitylation reaction mixture (30 µl) contained 50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 2 
mM ATP, 0.6 mM dithiothreitol, 3 µg ubiquitin, 1 µg of histones, 300 ng of E1 (Sigma), 
300 ng of UbcH5c (Upstate) (Chen et al. 2002), and 40ng of the BRCA1/BARD1 
complex (Starita et al., 2004).  The reactions were performed at 37°C for 1.5 hrs and 
were stopped by adding 15 µl of 5x Laemmli loading buffer; the samples containing 
purified histones were boiled for 3 min, whereas the samples containing nucleosomes 
and oligonucleosomes were heated from 60oC to boiling for ~30 min prior to SDS-PAGE 
analysis.  Proteins were resolved on 15% SDS-PAGE and further analyzed by Western 
blotting.  Resolved proteins where transferred onto a nitrocellulose membrane (Bio-Rad) 
by electroblotting.  Membranes were probed with one of the following antibodies, diluted 
1:1000:  anti-H2A C-terminus antibody (Abcam #18255, raised vs. H2A residues 115-
129), anti-H2A acidic-patch antibody (Upstate # 07-146, raised vs. H2A residues 88-97), 
anti-H2Aub antibody (Millipore # 05-678 raised vs. ubiquityl-histone H2A) anti-H2B C-
terminus antibody (Abcam #1790, raised vs. H2B residues 108-125), and anti-Ub 
antibody (Upstate #07-375).  Alternatively, the blots were stripped by RestoreTM Western 
Blot Stripping Buffer (Thermo Scientific) following the first Ab and further probed with 
another antibody.  After incubation with a primary antibody for 2 hrs, the membranes 
were washed trice with water and then incubated for 30 min at room temperature with 
the secondary antibody (goat anti-rabbit HRP-conjugated IgG, Santa Cruz 
Biotechnology, SC-2004) diluted 1:10 000.  The membrane was developed using the 
ECL Western blotting detection reagents according to manufacturer's protocol 
(Amersham Biosciences) and chemiluminescence was detected on autoradiography 
film. 
 

RESULTS AND DISCUSSION 
Both Histones H2A and H2B can be Modified when Free in Solution—Modification of 

purified histones free in solution by BRCA1/BARD1 has been previously reported (Chen 
et al., 2002; Mallery et al., 2002).  The Chen et al. (2002) work focused on recombinant 
H2A from human origin, whereas the Mallery et al. (2002) paper demonstrated 
ubiquitylation of all core histones, but the origin of the histones was not specified.  Thus, 
we performed ubiquitylation reactions on human recombinant histones.  The quality of 
the purified proteins used for these reactions, and also for reconstituting nucleosomes 
and nucleosomal arrays, was checked by SDS-electrophoresis (Fig. 1A). 

We next investigated the ubiquitylation of H2A by Western blot analysis.  
Transferred proteins were first probed with anti-H2A antibody, followed by membrane 
stripping and reprobing with anti-ubiquitin antibody to detect both ubiquitin and 
ubiquitylated proteins.  The data (Fig. 1B) clearly indicate an efficient ubiquitylation of 
H2A, with at least 50% of the protein being modified (mono- and di-ubiquitylation).  The 
specificity of the reaction was tested by performing the reaction in the absence of 
ubiquitin, the E1 enzyme, or BRCA1/BARD1 (Fig. 1C).  Only in the presence of all 
components of the ubiquitylation machinery (E1, E2, BRCA1/BARD1, ubiquitin, and 
ATP, designated full reaction) was H2A modified. 
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We then performed a similar test on purified H2B.  We again observed two modified 
forms (mono and di) but the reaction was much less efficient (Fig. 1D). 

Thus, our in vitro ubiquitylation system modifies both histones H2A and H2B, H2A 
being modified with higher efficiency. 

Both Histones H2A and H2B can be Modified when Incorporated in 
Mononucleosomes and Nucleosomal Arrays—Since our overall goal is to understand 
the mechanism of histone ubiquitylation action in the context of chromatin, we next 
performed the ubiquitylation reaction on mononucleosomes, reconstituted in vitro from a 
DNA fragment containing a nucleosome positioning sequence and purified recombinant 
human histones.  The quality of reconstitution was checked on native polyacrylamide 
gels, in which the population of reconstituted particles separates into several bands that 
differ in the position of the histone octamer with respect to the underlying sequence 
(O’Donahue et al., 1994; Furrer et al., 1995) (Fig. 2A).  The uppermost band 
corresponds to a particle in which the octamer occupies a central position on the DNA 
fragment, whereas the lowest band is an end-positioned nucleosome. 

The Western blot was successively treated with anti-H2A antibody and then with 
anti-H2B antibody (Fig. 2B).  It was clear that histone H2B has been modified, and the 
extent of modification was similar to that of the purified protein.  The situation with 
nucleosomal H2A was much more difficult to interpret.  Although we could see no band 
corresponding to modified forms of H2A, there was an almost complete disappearance 
of the unmodified band in the full reaction lane.  This result was highly reproducible in 
experiments performed on mononucleosomal particles and in experiments performed 
with subsaturated nucleosomal arrays (Fig. 2C and D). 

There were two possible explanations for this rather unexpected result.  First, the 
anti-H2A antibody used recognizes the C-terminus of H2A, which contains the 
ubiquitylatable K120 residue.  Thus, it is possible that the modified forms of H2A were 
no longer recognizable by this antibody.  In order to exclude this possibility, we acquired 
a new anti-H2A antibody which was raised against peptide 88-99, i.e. should recognize 
the molecule independently of whether it is ubiquitylated or not.   Using this antibody, 
we observed exactly the same behavior: disappearance of the H2A unmodified band 
form the gel (lanes 1 and 2 in the anti-H2A blot in Fig. 2E), and lack of appearance of 
new bands entering the gel. 

The second possible explanation is that the ubiquitylated nucleosomal particles or 
nucleosomal arrays are prone to aggregation, and the aggregate does not enter the gel.  
Indeed, in later experiments, we carefully inspected the gels, the blots, and the Western 
blots for the presence of aggregated material in the wells.  As seen in Fig. 2E (left 
panel), some aggregation occurred even during ubiquitylation of the purified H2A.  The 
aggregation was much more pronounced in the ubiquitylated nucleosome preparation 
(seen in the blot and anti-Ub western blot, right panel of Fig. 2E).  Again, though, the 
material in the well did not stain with anti-H2A antibody, most probably as a result of 
occlusion of the respective epitope in the aggregate. 

Thus, we can conclude that both nucleosomal histones H2A and H2B are modified 
by BRCA1/BARD1.  The degree of modification, however, is significantly different.  H2A 
is massively (almost quantitatively) modified, whereas the ubiquitylation of H2B is 
relatively modest. 
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Both Histones H2A and H2B can be Modified on the Same Nucleosomal Particle—
An important unresolved question concerning histone ubiquitylation in the context of the 
nucleosomal particle is whether or not a single particle can contain both H2Aub and 
H2Bub.  Early biochemical experiments from J. Davie’s laboratory (Li et al., 1993) used 
cross-linking of hydroxyapatite column-fractions that contained H2A, H2Aub, H2B, and 
H2Bub (but no DNA) and two-dimensional electrophoretic analysis of the cross-linked 
products.  They observed that H2Aub and H2Bub could be crosslinked, indicating that 
H2Aub and H2Bub can form dimers in solution.  With the advent of more sophisticated 
experimental techniques, it is now possible to ask the next question – can nucleosome 
particles accommodate both H2Aub and H2Bub in the same particle.  The expectation 
from a structural view point is that this may be possible (Fig. 3).  On the other hand 
though, the simultaneous presence of the two modified histones may be incompatible 
with their opposite role in transcription regulation (see Introduction). 

In order to see whether BRCA1/BARD1 can modify both H2A and H2B in the same 
particle, we took advantage the availability of a commercial antibody that specifically 
recognizes monoubiquitylated H2A.  (The antibody is on backorder and will be 
available to us only in April)( experiments in progress).  We will use this antibody 
for immuno-selection of nucleosomes containing H2Aub; these nucleosomes will be 
then probed for the presence of modified H2B. 
 
Key Research Accomplishments 

We have demonstrated that both nucleosomal histones H2A and H2B are modified by 
BRCA1/BARD1.  The degree of modification, however, is significantly different.  H2A is 
massively (almost quantitatively) modified, whereas the ubiquitylation of H2B is relatively 
modest. 
 
 

Reportable Outcomes 
Manuscript in preparation, Abstract for the Era of Hope conference.  
 

Conclusion 
We conclude that both nucleosomal histones H2A and H2B are modified by 

BRCA1/BARD1.  The degree of modification, however, is significantly different.  H2A is 
massively (almost quantitatively) modified, whereas the ubiquitylation of H2B is relatively 
modest. These results raise the possibility that BRCA1/BARD1 can directly affect nucleosomal 
structure, dynamics, and function through its ability to modify nucleosomal histones. 
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Appendices 
 

SUPPORTING DATA 
 

FIGURE LEGENDS 
 

FIG. 1.  Purification of recombinant human core histones and in vitro 
ubiquitylation reaction performed with H2A and H2B.  A, Purified recombinant 
human histones are analyzed on Coomassie blue-stained 15% SDS-PAGE. B, 
BRCA1/BARD1 ubiquitylation of H2A: the nitrocellulose membranes were probed with 
the anti-H2A antibody, stripped, and re-probed with the anti-Ub antibody.  C, 
BRCA1/BARD1-mediated ubiquitylation of H2A in a complete reaction mixture and in 
partial mixtures lacking ubiquitin, E1, or BRCA1/BARD1.  Upper panel, Ponceau 
staining of the nitrocellulose membrane after electroblotting; lower panel, same 
membrane probed with anti-H2A antibody. D, BRCA1/BARD1 ubiquitylation of H2B: the 
nitrocellulose membranes were probed with the anti-H2B antibody, stripped, and re-
probed with the anti-Ub antibody. 
 
FIG. 2.  Reconstitution of mononucleosomes and oligonucleosomes and in vitro 
ubiquitylation reaction by BRCA1/BARD1.  A, Mononucleosomes reconstituted in 
vitro from the 208 bp DNA fragment and purified human histones and analyzed on 
SYBR Green I-stained 5.5% native PAGE.  M, marker; R, reconstituted 
mononucleosome. B, BRCA1/BARD1 ubiquitylation of mononucleosomes: the 
nitrocellulose membrane was probed with the anti-H2A C-terminus antibody, stripped, 
and re-probed with the anti-H2B antibody.  C, Oligonucleosomes reconstituted in vitro 
from the 208-12 DNA fragment and purified human histones and analyzed on ethidium 
bromide-stained 1% agarose gel.  D, BRCA1/BARD1 ubiquitylation of 
oligonucleosomes: the nitrocellulose membrane was probed with the anti-H2A C-
terminus antibody, stripped, and re-probed with the anti-H2B antibody.  E, 
BRCA1/BARD1 ubiquitylation of H2A and mononucleosomes: the nitrocellulose 
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membrane was stained with Ponceau (labeled blot), washed and probed with the anti-
H2A acidic-patch antibody, stripped, and re-probed with the anti-UB antibody. Dotted 
line boxes indicates the presence of material in full reaction sample wells when blot was 
stained by Ponceau and probed by anti-UB antibody, whereas the full line box indicates 
the  loss of H2A  in full reaction when probed with anti-H2A acidic-patch antibody.   
 
FIG. 3.  Schematic representation of ubiquitin binding to nucleosomal H2A and 
H2B.  Representation of a portion of the crystal structure of the nucleosome core 
particle containing, for clarity, only the nucleosomal DNA and the two molecules of 
either H2B (panel A) or H2A (panel B).  Panel C depicts a hypothetical particle with both 
H2A and H2B ubiquitylated.  For clarity, only one H2A and one H2B molecule are 
shown.   DNA double strands are shown in blue and yellow, histones are shown in red, 
and the ubiquitin molecule is shown in purple.  The schematic was created from existing 
crystal structure coordinates from NCBI’s PDB (2CV5) structure of the human 
nucleosome and PDB (2ZCB) of ubiquitin with the help of UCSF Chimera. 
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